An Inequality for Matrix Operators and Its Applications
نویسنده
چکیده
In this paper, we prove a simple inequality which plays important role in the summability theory, matrix operators theory, approximation theory, and also provides great convenience in computations. As a corollary, we give the well known results of [1,2,5] under some simpler conditions, and a very short and different.proofs of results in [6,7] .
منابع مشابه
Extension of Hardy Inequality on Weighted Sequence Spaces
Let and be a sequence with non-negative entries. If , denote by the infimum of those satisfying the following inequality: whenever . The purpose of this paper is to give an upper bound for the norm of operator T on weighted sequence spaces d(w,p) and lp(w) and also e(w,?). We considered this problem for certain matrix operators such as Norlund, Weighted mean, Ceasaro and Copson ma...
متن کاملA determinant inequality and log-majorisation for operators
Let $lambda_1,dots,lambda_n$ be positive real numbers such that $sum_{k=1}^n lambda_k=1$. In this paper, we prove that for any positive operators $a_1,a_2,ldots, a_n$ in semifinite von Neumann algebra $M$ with faithful normal trace that $t(1)
متن کاملThe Structure of Bhattacharyya Matrix in Natural Exponential Family and Its Role in Approximating the Variance of a Statistics
In most situations the best estimator of a function of the parameter exists, but sometimes it has a complex form and we cannot compute its variance explicitly. Therefore, a lower bound for the variance of an estimator is one of the fundamentals in the estimation theory, because it gives us an idea about the accuracy of an estimator. It is well-known in statistical inference that the Cram&eac...
متن کاملSome inequalities involving lower bounds of operators on weighted sequence spaces by a matrix norm
Let A = (an;k)n;k1 and B = (bn;k)n;k1 be two non-negative ma-trices. Denote by Lv;p;q;B(A), the supremum of those L, satisfying the followinginequality:k Ax kv;B(q) L k x kv;B(p);where x 0 and x 2 lp(v;B) and also v = (vn)1n=1 is an increasing, non-negativesequence of real numbers. In this paper, we obtain a Hardy-type formula forLv;p;q;B(H), where H is the Hausdor matrix and 0 < q p 1. Also...
متن کاملApplication of measures of noncompactness to infinite system of linear equations in sequence spaces
G. Darbo [Rend. Sem. Math. Univ. Padova, 24 (1955) 84--92] used the measure of noncompactness to investigate operators whose properties can be characterized as being intermediate between those of contraction and compact operators. In this paper, we apply the Darbo's fixed point theorem for solving infinite system of linear equations in some sequence spaces.
متن کامل